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Key Topics

01 Vertically integrated approaches to reduce hydrogen cost

02 Improved electrode structure leads to 10-100-fold higher performance

03 Alternative anode reactions lead to significant hydrogen cost reduction

04 Alkaline-PEM approaches

Facilities available to perform research
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Vertically integrated approaches to reduce 

hydrogen cost

• Ideally want approaches which can be 

applied across a range of systems
• Rather than “better material X” →

“Improved approach”
• New approaches lead to conceptual shift

• Opportunity for valuable innovations is 

higher

• Opportunities at different scales
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Improved electrode structure leads to 10-100-

fold performance improvement

• General approach applicable to any electrolyser electrode structure

• Associated with minimizing transport loses which can be significant

• Poorly researched area

Advanced electrode design (applied to fuel cells)

• Optimise mass transport and ionic conductivity

• Catalyst performs 10-fold better than current designs

• 25-fold reduction in catalyst requirements
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Improved electrode structure – thrifting of Ir
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• Initial results showing higher 

performance than any catalysts in 

literature

• MSci student applied technique to 

making electrolyser electrodes

Outstanding issues

• Need electrically conducting 

buffer layer

• Longevity and degradation

• Understanding loading effects

• Microelectrokinetic model of 

performance

Collaborators: Johnson Matthey, Bramble Energy
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Alternative anode reactions lead to greater 

materials efficiency 
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• Oxygen evolution is a poor reaction to couple 

to hydrogen evolution
• Kinetics are poor, requiring significant 

overpotential

• Value of oxygen is low 

• Requires Ir which is rare



Alternative anode reactions lead to greater 

materials efficiency (and are Ir-free)
3

Research methodology

a) Develop electrocatalysts for H2O2/O3 production and incorporate in electrolyser

• Doped tin(IV) oxides are:
• Corrosion resistant

• Electrically conductive

• Electrocatalysts for ozone production

• Long term efficacy is a problem due to de-doping of cationic dopants

• Anionic dopants are much more effective (e.g. F)

• Understand the scale and potential uses for production of H2O2 and O3 at scale

b) Examine use of redox mediators to catalyse useful chemical processes

• Pair Hydrogen evolution with production of oxidative redox mediator 

M  M+ +e- M+ + Reactant → Product + M

• Mediator = Mn2+ and/or N-hydroxyphthalimide

• Reactant = Vinasse or Lignin

Additional benefit is 

that these materials 
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Collaborators: 

RFC Power, BP,

University of Sao Paulo



Alkaline-PEM approaches

• Development of Alkaline PEM electrolysers with Dr Qilei Song and Prof Nilay Shah

8

4

H2O

O2

PTL

B
ip

o
la

r p
la

te

B
ip

o
la

r p
la

te

H2O

H2

Membrane

Support

Catalysts

Nickel foam

Cathode PTL

Catalysts

Anode
Ionomer

(b)

WP1 AEM 
membranes and 

ionomers

WP2: Electrocatalysts 
synthesis and 
characterization 

WP3 Membrane 
Electrode assembly 

(MEA)

WP4 Electrolyser 
performance

WP6 Knowledge 
transfer

Im
p

a
c
t 

&
 

o
u

tr
e
a
c
h

E
n

g
in

e
e
ri

n
g

 &
 s

c
a
le

 u
p

WP6 Management 
and Coordination

M
a
te

ri
a
ls

 
in

n
o

v
a
ti

o
n

P
ro

je
c
t 

m
a
n

a
g

e
m

e
n

t

WP5: kW-scale AEM 
electrolyser Stack design

(b)(a)

500 nm

Low-cost support

Membrane

Surface

Thin film composite membrane

Asymmetric membrane

(g) (j)

(k)

Collaborators: Bramble Energy

(c) (d)

HER

OER



Fuel synthetic laboratories for materials development

Walk in fume cupboard for large scale testing and materials development including high temperature testing

Materials development and characterisation

5 Facilities available to perform research



Hydrogen safe laboratories (24/7 certified) with multiple test stands. Full gas handling

Post operation teardown and analysis and environmental testing
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